504 research outputs found

    Standard Giant Branches in the Washington Photometric System

    Get PDF
    We have obtained CCD photometry in the Washington system C,T1 filters for some 850,000 objects associated with 10 Galactic globular clusters and 2 old open clusters. These clusters have well-known metal abundances, spanning a metallicity range of 2.5 dex from [Fe/H]~-2.25 to +0.25 at a spacing of ~0.2 dex. Analogous to the method employed by Da Costa and Armandroff (1990, AJ, 100, 162) for V,I photometry, we then proceed to construct standard giant branches for these clusters. The Washington system technique is found to have three times the metallicity sensitivity of the V,I technique. Thus, for a given photometric accuracy, metallicities can be determined three times more precisely with the Washington technique. We find a linear relationship between (C-T1)o (at M(T1)=-2) and metallicity (on the Zinn 1985, ApJ, 293, 424 scale) exists over the full metallicity range, with an rms of only 0.04 dex. We also derive methods to determine distance, reddening and metallicity simultaneously, and note that the Washington system holds great potential for deriving accurate ages as well.Comment: To be published in the 1999 AJ January issu

    Ca II triplet spectroscopy of small magellanic cloud red giants. II. abundances for a sample of field stars

    Get PDF
    We have obtained metallicities of ∼360 red giant stars distributed in 15 Small Magellanic Cloud (SMC) fields from near-infrared spectra covering the Ca II triplet lines using the VLT + FORS2. The errors of the derived [Fe/H] values range from 0.09 to 0.35 dex per star, with a mean of 0.17 dex. The metallicity distribution (MD) of the whole sample shows a mean value of [Fe/H] = -1.00 ± 0.02, with a dispersion of 0.32 0.01, in agreement with global mean [Fe/H] values found in previous studies. We find no evidence of a metallicity gradient in the SMC. In fact, on analyzing the MD of each field, we derived mean values of [Fe/H] = -0.99 ± 0.08 and [Fe/H] = -1.02 ± 0.07 for fields located closer and farther than 4° from the center of the galaxy, respectively. In addition, there is a clear tendency for the field stars to be more metal-poor than the corresponding cluster they surround, independent of their positions in the galaxy and of the clusters' age. We argue that this most likely stems from the field stars being somewhat older and therefore somewhat more metal-poor than most of our clusters. © 2010. The American Astronomical Society.Fil: Parisi, Maria Celeste. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; ArgentinaFil: Geisler, Doug. Universidad de Concepción; ChileFil: Grocholski, A. J.. University of Florida; Estados Unidos. Space Telescope Science Institute; Estados UnidosFil: Claria Olmedo, Juan Jose. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; ArgentinaFil: Sarajedini, A.. University of Florida; Estados Unido

    Resolved Stellar Populations of Super-Metal-Rich Star Clusters in the Bulge of M31

    Get PDF
    We have applied the MCS image deconvolution algorithm (Magain, Courbin & Sohy 1998) to HST/WFPC2 V, I data of three M31 bulge globular clusters (G170, G177, and G198) and control fields near each cluster. All three clusters are clearly detected, with an increase in stellar density with decreasing radius from the cluster centers; this is the first time that stars have been resolved in bulge clusters in the inner regions of another galaxy. From the RGB slopes of the clusters and the difference in I magnitude between the HB and the top of the RGB, we conclude that these three clusters all have roughly solar metallicity, in agreement with earlier integrated-light spectroscopic measurements. Our data support a picture whereby the M31 bulge clusters and field stars were born from the same metal-rich gas, early in the galaxy formation.Comment: 7 pages, 4 Postscript figures, accepted for publication in A&

    The Metallicity Distribution Function of Field Stars in M31's Bulge

    Full text link
    We have used Hubble Space Telescope Wide Field Planetary Camera 2 observations to construct a color-magnitude diagram (CMD) for the bulge of M31 at a location ~1.6 kpc from the galaxy's center. Using scaled-solar abundance theoretical red giant branches with a range of metallicities, we have translated the observed colors of the stars in the CMD to abundances and constructed a metallicity distribution function (MDF) for this region. The MDF shows a peak at [M/H]~0 with a steep decline at higher metallicities and a more gradual tail to lower metallicities. This is similar in shape to the MDF of the Milky Way bulge but shifted to higher metallicities by ~0.1 dex. As is the case with the Milky Way bulge MDF, a pure closed box model of chemical evolution, even with significant pre-enrichment, appears to be inconsistent with the M31 bulge MDF. However, a scenario in which an initial infall of gas enriched the bulge to an abundance of [M/H] ~ -1.6 with subsequent evolution proceeding as a closed box provides a better fit to the observed MDF. The similarity between the MDF of the M31 bulge and that of the Milky Way stands in stark contrast to the significant differences in the MDFs of their halo populations. This suggests that the bulk of the stars in the bulges of both galaxies were in place before the accretion events that occurred in the halos could influence them.Comment: 12 pages, 9 figures, accepted for publication in The Astronomical Journal, October 200
    corecore